

www.embeddedplanet.com

Agora | Getting started with Azure on Agora

3 Dec 2021 | v1.0.0

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 2 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

1. Introduction
Check out the AWS device catalog listing for Agora here!
https://devices.amazonaws.com/detail/a3G0h0000088JGgEAM/Embedded-Planet-Agora

Our Agora platform is a production-ready solution that provides an excellent starting point for any cloud-
connected design. This page will go over the necessary steps to get started using the Agora platform with
Azure IoT Hub.

If you run into any issues while trying to follow this guide please contact our support team!
https://www.embeddedplanet.com/contact-us/

https://devices.amazonaws.com/detail/a3G0h0000088JGgEAM/Embedded-Planet-Agora
https://devices.amazonaws.com/detail/a3G0h0000088JGgEAM/Embedded-Planet-Agora
https://www.embeddedplanet.com/contact-us/
https://www.embeddedplanet.com/contact-us/

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 3 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

2. Required Hardware

To follow along with this guide you just need an Agora product development kit.
https://shop.embeddedplanet.com/products/flidor-development-kit

This kit includes an Agora module fully-loaded with all optional sensors and connectivity options, as well
as a Flidor debug board, an AC adapter, and a compatible cellular antenna.

3. REQUIRED SOFTWARE AND SUPPORTED TOOLCHAINS

a. Build Tools Installation
The Agora product development kit supports software development using ARM's IoT RTOS, Mbed-OS.
https://os.mbed.com/mbed-os/

Follow the Mbed-OS guide here to install the Mbed CLI build tools and build your first application. Due to
the complexity of this project, we do not recommend using the online IDE/compiler to follow this guide.
https://os.mbed.com/docs/mbed-os/v6.2/quick-start/build-with-mbed-cli.html

b. Supported IDEs and Toolchains
Mbed-OS build tools support both the commercially available ARMC6 compiler and the free GNU ARM
toolchains.

https://shop.embeddedplanet.com/products/flidor-development-kit
https://shop.embeddedplanet.com/products/flidor-development-kit
https://os.mbed.com/mbed-os/
https://os.mbed.com/mbed-os/
https://os.mbed.com/docs/mbed-os/v6.2/quick-start/build-with-mbed-cli.html
https://os.mbed.com/docs/mbed-os/v6.2/quick-start/build-with-mbed-cli.html

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 4 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

Mbed-OS supports development and debugging using a variety of popular IDEs, including:

• Mbed Studio

• VSCode

• Eclipse

• Code::Blocks

and many more. You can learn more about supported IDEs and toolchains, as well as how to export Mbed
projects and set up debugging from Mbed's official documentation here.
https://os.mbed.com/docs/mbed-os/v6.2/build-tools/third-party-build-tools.html

4. Other Software
Additionally, you will need a serial terminal program to view debug output from your Agora board. The
Flidor development board (included in the Agora product development kit) has an on-board UART-to-
USB converter so no other adapters are required. This guide will show using minicom on Ubuntu. Follow
your serial terminal software's documentation on how to set up a similar connection.

https://os.mbed.com/docs/mbed-os/v6.2/build-tools/third-party-build-tools.html
https://os.mbed.com/docs/mbed-os/v6.2/build-tools/third-party-build-tools.html

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 5 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

5. Hardware Setup

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 6 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

Before running the demo, you must verify the following are properly set up on your Agora product
development kit: the cellular antenna, the power supply, and the power supply selection jumper.

For this project you must have the included cellular antenna plugged in to the appropriate U.FL
connector, J7, on the Agora board. In the above image, the cellular antenna connector is highlighted with
a light blue box. The other U.FL connector, J8, highlighted with a light green box, is for the GPS antenna.
Make sure the Agora board is being powered by the included DC power supply. The power supply
included with the Flidor development kit can be plugged into the DC jack highlighted with an orange box.
Attempting to power the Agora board for cellular applications using USB may cause cellular connectivity
issues. A typical USB port cannot provide enough current in some scenarios.
You must also locate jumper J16 on the Flidor development board, highlighted in the image above with
a yellow box, it is adjacent to the power switch. Make sure to move the jumper to the position marked
"Jacks", as shown in the image above, so the Agora module is powered from the DC jack input rather than
the USB input. The Target Device Supply Voltage jumper setting (J12), highlighted with a violet box in the
image above, should be set to 3.3V as shown above.
Plug the Flidor development board into your computer's USB port, making sure to use the micro USB
Type-B port labeled "DHD USB", highlighted with a pink box in the image above. The Flidor board should
show up as a small removable drive and as a serial port.
Your hardware is now set up and ready to connect to AWS!

6. SETTING UP AZURE
Follow Azure IoT Hub's official documentation to

1. Create a new hub on the Azure portal (documentation). You will need a Standard tier hub to enable cloud-
to-device messages for this example, and a free option is available in this tier.
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal#create-an-iot-hub
https://azure.microsoft.com/en-gb/pricing/details/iot-hub/

2. Register a new device to the hub you have created (documentation). Make a copy of the "Primary
Connection String" of the device. You may stop and return to this tutorial when you reach the section titled
"Message Routing for an IoT Hub."
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal#register-a-new-device-
in-the-iot-hub

When you are finished creating your new device, return to the "IoT Devices" list in your IoT Hub

portal. Refresh the list if your new device doesn't show up at first. Click the name of your new device

to open a page with device credentials and details you will need to connect later. On this page, copy

the "Primary Connection String" and paste it in a temporary file for use later:

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal#create-an-iot-hub
https://azure.microsoft.com/en-gb/pricing/details/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal#create-an-iot-hub
https://azure.microsoft.com/en-gb/pricing/details/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal#register-a-new-device-in-the-iot-hub
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal#register-a-new-device-in-the-iot-hub
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal#register-a-new-device-in-the-iot-hub

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 7 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

Note: The Primary Connection String contains sensitive information that authenticates your new

device to your IoT Hub instance. It should treated like a password!

Now the IoT Hub is ready for use in this example!

7. SETTING UP THE MBED-OS APPLICATION
The example Mbed-OS firmware application for this tutorial can be cloned from GitHub here.
https://github.com/EmbeddedPlanet/mbed-os-example-aws

Simply clone or download a copy of that repository and open up a command line in that project.
In the command line, execute the following to download all required dependencies:

mbed deploy && mbed config root .
Set EP_AGORA as your build target: mbed target EP_AGORA. Also make sure to set the toolchain you are using,
eg: mbed toolchain GCC_ARM.
Once these steps are complete, it's time to integrate your device's Primary Connection String.

8. INTEGRATING CREDENTIALS

https://github.com/EmbeddedPlanet/mbed-os-example-aws
https://github.com/EmbeddedPlanet/mbed-os-example-aws

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 8 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

Integrating your device's Primary Connection String into this example application is very

simple, there's no coding required! Simply open the application configuration

file, mbed_app.json, in a text editor and update the value parameter under

the iothub_connection_string configuration. There's no manual formatting necessary, simply

copy the device's Primary Connection String from the previous steps and paste it in place of

the "HostName=...;DeviceId=...;SharedAccessKey=...", make sure to retain the leading "\" and

trailing \""!

Your credentials are now integrated into the code!

9. CONFIGURING THE APPLICATION
Before building the application, you must configure the APN of your cellular carrier along with any

other cellular credentials your SIM may require, such as a PIN code, username, and/or password.

Under the EP_AGORA parameters in mbed_app.json, replace the value of nsapi.default-cellular-apn with

one that is appropriate for your SIM and carrier. Make sure to retain the leading "\" and trailing \""!

The parameters you may need to modify in your mbed_app.json are highlighted in the screenshot

below:

In most cases, you will only need to modify the iothub_connection_string and nsapi.default-cellular-

apn parameters.

Once these are configured you can build the example with the following command: mbed compile.

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 9 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

10. RUNNING THE EXAMPLE
Once the build finishes, simply program the Agora board with the compiled binary. You can

accomplish this by dragging the mbed-os-example-for-azure.hex file from

the BUILD/EP_AGORA/GCC_ARM folder to the DAPLINK removable drive that shows up when you plug in the

Flidor development board.

After programming, open your preferred serial terminal of choice to view the debug UART output.

The Flidor development board also shows up as a USB serial port. The example application's debug

output baud rate is set to 115200 by default.

You should see output similar to the following:

Info: Connecting to the network
Info: Connection success, MAC:
Info: Getting time from the NTP server
Info: Time: Tue Oct 20 16:57:14 2020

Info: RTC reports Tue Oct 20 16:57:14 2020

Info: Starting the Demo
Info: Initializing IoT Hub client
Info: Sending: "10 messages left to send, or until we receive a reply"
Info: Sending: "9 messages left to send, or until we receive a reply"
-> 16:57:18 CONNECT | VER: 4 | KEEPALIVE: 240 | FLAGS: 192 | USERNAME: epiothub0
<- 16:57:18 CONNACK | SESSION_PRESENT: false | RETURN_CODE: 0x0
Info: Connected to IoT Hub
-> 16:57:18 SUBSCRIBE | PACKET_ID: 2 | TOPIC_NAME: devices/myNewDeviceId/messag1
-> 16:57:19 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 3
-> 16:57:19 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
<- 16:57:19 SUBACK | PACKET_ID: 2 | RETURN_CODE: 1
Info: Sending: "8 messages left to send, or until we receive a reply"
-> 16:57:19 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
<- 16:57:19 PUBACK | PACKET_ID: 3
Info: Message sent successfully
<- 16:57:19 PUBACK | PACKET_ID: 4
Info: Message sent successfully
<- 16:57:19 PUBACK | PACKET_ID: 5
Info: Message sent successfully
Info: Sending: "7 messages left to send, or until we receive a reply"
-> 16:57:20 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
<- 16:57:20 PUBACK | PACKET_ID: 6
Info: Message sent successfully
Info: Sending: "6 messages left to send, or until we receive a reply"
-> 16:57:21 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
<- 16:57:21 PUBACK | PACKET_ID: 7
Info: Message sent successfully
Info: Sending: "5 messages left to send, or until we receive a reply"
-> 16:57:22 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
<- 16:57:22 PUBACK | PACKET_ID: 8
Info: Message sent successfully
Info: Sending: "4 messages left to send, or until we receive a reply"
-> 16:57:23 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
<- 16:57:23 PUBACK | PACKET_ID: 9

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 10 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

Info: Message sent successfully
Info: Sending: "3 messages left to send, or until we receive a reply"
-> 16:57:24 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
<- 16:57:24 PUBACK | PACKET_ID: 10
Info: Message sent successfully
Info: Sending: "2 messages left to send, or until we receive a reply"
-> 16:57:25 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
<- 16:57:25 PUBACK | PACKET_ID: 11
Info: Message sent successfully
Info: Sending: "1 messages left to send, or until we receive a reply"
-> 16:57:26 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
<- 16:57:26 PUBACK | PACKET_ID: 12
Info: Message sent successfully

If so, congratulations! The Agora Azure example is running successfully!

If you have any trouble look through the below Troubleshooting section to see if it helps solve your

problem. You can also reach out to Embedded Planet's support team using our website's Contact Us

form.

11. Sending messages from cloud to device

This demo also allows you to test sending messages from Azure IoT Hub to the device. To try this out,

first navigate to the following page in your Azure portal. Click the "IoT devices" tab in the left pane as

before, navigate to the device you're running the example with and click into its details page. Once

there, you can send a message to the device from the portal by clicking the "Message to Device"

option as shown in the screenshot below:

https://www.embeddedplanet.com/contact-us/
https://www.embeddedplanet.com/contact-us/

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 11 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

Once the next page loads, you can type your message in "Message Body" text box:

Before sending the message, reset the Agora microcontroller (the Flidor development board has a

convenient on-board reset button) and wait for the output to show that the device has connected to

Azure IoT Hub successfully. While the board is counting down you can send the message and the

output should show successful receipt of your message as below:

Info: Connecting to the network
Info: Connection success, MAC:
Info: Getting time from the NTP server
Info: Time: Tue Oct 20 18:50:56 2020

Info: RTC reports Tue Oct 20 18:50:56 2020

Info: Starting the Demo
Info: Initializing IoT Hub client
Info: Sending: "10 messages left to send, or until we receive a reply"
Info: Sending: "9 messages left to send, or until we receive a reply"
-> 18:51:00 CONNECT | VER: 4 | KEEPALIVE: 240 | FLAGS: 192 | USERNAME: epiothub0
<- 18:51:00 CONNACK | SESSION_PRESENT: true | RETURN_CODE: 0x0
Info: Connected to IoT Hub
-> 18:51:00 SUBSCRIBE | PACKET_ID: 2 | TOPIC_NAME: devices/myNewDeviceId/messag1
-> 18:51:01 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 3
-> 18:51:01 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
Info: Sending: "8 messages left to send, or until we receive a reply"
-> 18:51:01 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_LEAST_ONCE | 2
<- 18:51:01 SUBACK | PACKET_ID: 2 | RETURN_CODE: 1
<- 18:51:01 PUBACK | PACKET_ID: 3
<- 18:51:01 PUBACK | PACKET_ID: 4
Info: Message sent successfully
Info: Message sent successfully
<- 18:51:01 PUBACK | PACKET_ID: 5
Info: Message sent successfully

 Embedded Planet, Inc. Getting started with Azure on Agora Document Version: 1.0.0 | 3 Dec 2021

 Page 12 of 12

Embedded Planet, Inc. Confidential – Do not copy or reproduce without expressed written consent of Embedded Planet, Inc.

Embedded Planet, Inc. 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128; 216-245-4180, www.embeddedplanet.com

<- 18:51:02 PUBLISH | IS_DUP: false | RETAIN: 0 | QOS: DELIVER_AT_MOST_ONCE | T2
Info: Message received from IoT Hub
Info: Message body: Hello world!
-> 18:51:02 DISCONNECT
Info: The demo has ended

12. TROUBLESHOOTING
A few troubleshooting tips to solve common problems in this example:

• If the example project fails to compile, make sure the mbed-os version is appropriate. At time of
writing, you can ensure the mbed-os version is compatible by executing the following: cd mbed-os
&& git checkout mbed-os-6.2.1

• If the example project fails to connect, you should verify you are in an area with good cellular
signal strength. You may want to try relocating the Agora board and retry the example. You should
also make sure the cellular antenna is properly oriented. For best performance, the cellular
antenna should be perpendicular relative to the ground.

• Make sure your Agora board has a SIM card in the on-board socket.

• Make sure your cellular APN is configured as appropriate for your carrier. You can change this
parameter by modifying the nsapi.default-cellular-apn value in the example
application's mbed_app.json configuration file.

• If you are having issues connecting to AWS, authenticating, or publishing/subscribing over MQTT,
you can view cloud-side error logs by enabling AWS Cloudwatch Logging for your AWS IoT
instance. Follow this guide to view AWS IoT logs in this way.

https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html

